
UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 1

1

Introduction to C++ Programming Language
C++ is a general-purpose programming language that was developed as an

enhancement of the C language to include object-oriented paradigm. It is an

imperative and a compiled language.

C++ is a middle-level language rendering it the advantage of programming low-level

(drivers, kernels) and even higher-level applications (games, GUI, desktop apps etc.).

Some of the features & key-points to note about the programming language are as
follows:
• Simple: It is a simple language in the sense that programs can be broken down

into logical units and parts, has a rich libray support and a variety of data-types.
• Machine Independent but Platform Dependent: A C++ executable is not

platform-independent (compiled programs on Linux won’t run on Windows),
however they are machine independent.

• Mid-level language: It is a mid-level language as we can do both systems-
programming (drivers, kernels, networking etc.) and build large-scale user
applications (Media Players, Photoshop, Game Engines etc.)

• Rich library support: Has a rich library support (Both standard ~ built-in data
structures, algorithms etc.) as well 3rd party libraries (e.g. Boost libraries) for fast
and rapid development.

• Speed of execution: C++ programs excel in execution speed. Since, it is a
compiled language, and also hugely procedural. Newer languages have extra in-
built default features such as grabage-collection, dynamic typing etc. which slow
the execution of the program overall. Since there is no additional processing
overhead like this in C++, it is blazing fast.

• Pointer and direct Memory-Access: C++ provides pointer support which aids
users to directly manipulate storage address. This helps in doing low-level
programming (where one might need to have explicit control on the storage of
variables).

• Object-Oriented: One of the strongest points of the language which sets it apart
from C. Object-Oriented support helps C++ to make maintainable and extensible
programs. i.e. Large-scale applications ca be built. Procedural code becomes
difficult to maintain as code-size grows.

• Compiled Language: C++ is a compiled language, contributing to its speed.

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 2

2

1.1 Procedural Vs Object Oriented Programming

Procedural Programming
Procedural Programming can be defined as a programming model which is derived
from structured programming, based upon the concept of calling procedure.
Procedures, also known as routines, subroutines or functions, simply consist of a
series of computational steps to be carried out. During a program’s execution, any
given procedure might be called at any point, including by other procedures or itself.

Languages used in Procedural Programming

FORTRAN, ALGOL, COBOL,
BASIC, Pascal and C.

Object Oriented Programming
Object oriented programming can be defined as a programming model which is based
upon the concept of objects. Objects contain data in the form of attributes and code in
the form of methods. In object oriented programming, computer programs are
designed using the concept of objects that interact with real world. Object oriented
programming languages are various but the most popular ones are class-based,
meaning that objects are instances of classes, which also determine their types.

Languages used in Object Oriented Programming

Java, C++, C#, Python,
PHP, JavaScript, Ruby, Perl,
Objective-C, Dart, Swift, Scala.

Following are the important differences between OOP and POP.

Sr.
No.

Key OOP POP

1 Definition OOP stands for Object
Oriented Programming.

POP stands for Procedural
Oriented Programming.

2 Approach OOP follows bottom up
approach.

POP follows top down
approach.

3 Division A program is divided to
objects and their
interactions.

A program is divided into
functions and they interacts.

4 Inheritance
supported

Inheritance is supported. Inheritance is not supported.

5 Access
control

Access control is supported
via access modifiers.

No access modifiers are
supported.

6 Data
Hiding

Encapsulation is used to
hide data.

No data hiding present. Data is
globally accessible.

7 Example C++, Java C, Pascal

https://www.geeksforgeeks.org/introduction-of-programming-paradigms/
https://www.geeksforgeeks.org/basic-concepts-of-object-oriented-programming-using-c/

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 3

3

1.2 Basic Concepts of Object Oriented Programming

1. Introduction
2. Class
3. Objects
4. Encapsulation
5. Abstraction
6. Polymorphism
7. Inheritance
8. Dynamic Binding
9. Message Passing

Object-oriented programming – As the name suggests uses objects in programming.
Object-oriented programming aims to implement real-world entities like inheritance,
hiding, polymorphism, etc in programming. The main aim of OOP is to bind together
the data and the functions that operate on them so that no other part of the code can
access this data except that function.

Characteristics of an Object Oriented Programming

https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/#intro
https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/#class
https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/#obj
https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/#encapsulation
https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/#abstraction
https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/#polymorphism
https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/#inheritance
https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/#db
https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/#mp
https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/#objects

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 4

4

Class
The building block of C++ that leads to Object-Oriented programming is a Class. It is
a user-defined data type, which holds its own data members and member functions,
which can be accessed and used by creating an instance of that class. A class is like
a blueprint for an object.
For Example: Consider the Class of Cars. There may be many cars with different
names and brand but all of them will share some common properties like all of them
will have 4 wheels, Speed Limit, Mileage range etc. So here, Car is the class and
wheels, speed limits, mileage are their properties.

• A Class is a user-defined data-type which has data members and member functions.
• Data members are the data variables and member functions are the functions used to

manipulate these variables and together these data members and member functions
define the properties and behaviour of the objects in a Class.

• In the above example of class Car, the data member will be speed limit, mileage etc
and member functions can apply brakes, increase speed etc.

We can say that a Class in C++ is a blue-print representing a group of objects which
shares some common properties and behaviours.

Object
An Object is an identifiable entity with some characteristics and behaviour. An Object
is an instance of a Class. When a class is defined, no memory is allocated but when
it is instantiated (i.e. an object is created) memory is allocated.

class person

{
char name[20];
int id;
public:
void getdetails(){}
};

int main()
{
person p1; // p1 is a object
}

Object take up space in memory and have an associated address like a record in
pascal or structure or union in C.

When a program is executed the objects interact by sending messages to one another.

Each object contains data and code to manipulate the data. Objects can interact
without having to know details of each other’s data or code, it is sufficient to know the
type of message accepted and type of response returned by the objects.

https://www.geeksforgeeks.org/c-classes-and-objects/
https://www.geeksforgeeks.org/c-classes-and-objects/

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 5

5

Encapsulation
In normal terms, Encapsulation is defined as wrapping up of data and information
under a single unit. In Object-Oriented Programming, Encapsulation is defined as
binding together the data and the functions that manipulate them.
Consider a real-life example of encapsulation, in a company, there are different
sections like the accounts section, finance section, sales section etc. The finance
section handles all the financial transactions and keeps records of all the data related
to finance. Similarly, the sales section handles all the sales-related activities and keeps
records of all the sales. Now there may arise a situation when for some reason an
official from the finance section needs all the data about sales in a particular month.

In this case, he is not allowed to directly access the data of the sales section. He will
first have to contact some other officer in the sales section and then request him to
give the particular data. This is what encapsulation is. Here the data of the sales
section and the employees that can manipulate them are wrapped under a single
name “sales section”.

Encapsulation in C++

Encapsulation also leads to data abstraction or hiding. As using encapsulation also
hides the data. In the above example, the data of any of the section like sales, finance
or accounts are hidden from any other section.

Abstraction
Data abstraction is one of the most essential and important features of object-oriented
programming in C++. Abstraction means displaying only essential information and
hiding the details. Data abstraction refers to providing only essential information about
the data to the outside world, hiding the background details or implementation.
Consider a real-life example of a man driving a car. The man only knows that pressing
the accelerators will increase the speed of the car or applying brakes will stop the car
but he does not know about how on pressing accelerator the speed is actually
increasing, he does not know about the inner mechanism of the car or the
implementation of accelerator, brakes etc in the car. This is what abstraction is.

• Abstraction using Classes: We can implement Abstraction in C++ using classes. The
class helps us to group data members and member functions using available access

https://www.geeksforgeeks.org/encapsulation-in-c/
https://www.geeksforgeeks.org/abstraction-in-c/

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 6

6

specifiers. A Class can decide which data member will be visible to the outside world
and which is not.

• Abstraction in Header files: One more type of abstraction in C++ can be header files. For
example, consider the pow() method present in math.h header file. Whenever we need
to calculate the power of a number, we simply call the function pow() present in the
math.h header file and pass the numbers as arguments without knowing the underlying
algorithm according to which the function is actually calculating the power of numbers.

Polymorphism
The word polymorphism means having many forms. In simple words, we can define
polymorphism as the ability of a message to be displayed in more than one form.
A person at the same time can have different characteristic. Like a man at the same
time is a father, a husband, an employee. So the same person posses different
behaviour in different situations. This is called polymorphism.

An operation may exhibit different behaviours in different instances. The behaviour
depends upon the types of data used in the operation.

C++ supports operator overloading and function overloading.

• Operator Overloading: The process of making an operator to exhibit different behaviours
in different instances is known as operator overloading.

• Function Overloading: Function overloading is using a single function name to perform
different types of tasks.
Polymorphism is extensively used in implementing inheritance.

Example: Suppose we have to write a function to add some integers, some times
there are 2 integers, some times there are 3 integers. We can write the Addition
Method with the same name having different parameters, the concerned method will
be called according to parameters.

Inheritance
The capability of a class to derive properties and characteristics from another class is
called Inheritance. Inheritance is one of the most important features of Object-Oriented
Programming.

• Sub Class: The class that inherits properties from another class is called Sub class or
Derived Class.

• Super Class:The class whose properties are inherited by sub class is called Base Class
or Super class.

• Reusability: Inheritance supports the concept of “reusability”, i.e. when we want to
create a new class and there is already a class that includes some of the code that we

https://www.geeksforgeeks.org/polymorphism-in-c/
https://www.geeksforgeeks.org/inheritance-in-c/

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 7

7

want, we can derive our new class from the existing class. By doing this, we are reusing
the fields and methods of the existing class.

Example: Dog, Cat, Cow can be Derived Class of Animal Base Class.

Dynamic Binding
In dynamic binding, the code to be executed in response to function call is decided at
runtime. C++ has virtual functions to support this.

Message Passing
Objects communicate with one another by sending and receiving information to each
other. A message for an object is a request for execution of a procedure and therefore
will invoke a function in the receiving object that generates the desired results.
Message passing involves specifying the name of the object, the name of the function
and the information to be sent.

Applications of Object Oriented Programming
Main application areas of OOP are:

▪ User interface design such as windows, menu.
▪ Real Time Systems
▪ Simulation and Modelling
▪ Object oriented databases
▪ AI and Expert System
▪ Neural Networks and parallel programming
▪ Decision support and office automation systems etc.

1.3 Structure of C++ Program
The structure of C++ program is divided into four different sections:
(1) Header File Section
(2) Class Declaration section

https://www.geeksforgeeks.org/virtual-functions-and-runtime-polymorphism-in-c-set-1-introduction/

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 8

8

(3) Member Function definition section
(4) Main function section

(1) Header File Section :
 This section contains various header files.
 You can include various header files in to your program using this section.

For example:
include <iostream.h >

Header file contains declaration and definition of various built in functions as well as
object. In order to use this built in functions or object we need to include particular
header file in our program.

(2) Class Declaration Section:
This section contains declaration of class.
You can declare class and then declare data members and member functions inside
that class.
For example:
class Demo
{
int a, b;
public:
void input();
void output();
}

You can also inherit one class from another existing class in this section.

(3) Member Function Definition Section:
This section is optional in the structure of C++ program. Because you can define
member functions inside the class or outside the class. If all the member functions are
defined inside the class then there is no need of this section.
This section is used only when you want to define member function outside the class.
This section contains definition of the member functions that are declared inside the
class.

For example:
void Demo:: input ()
{
cout << “Enter Value of A:”;
cin >> a;
cout << “Enter Value of B:”;
cin >> b;
}

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 9

9

(4) Main Function Section:
o In this section you can create an object of the class and then using this object you
can call various functions defined inside the class as per your requirement.

For example:
Void main ()
{
Demo d1;
d1.input ();
d1.output ();
}

We can also compare the structure of C++ program with client server application. In
client server application client send request to the server and server sends response
to the client.
In above C++ structure the class declaration section and member function definition
section both together works as a server and main () function section works as a client.
Because in main () function section we create an object of the class and then using
that object we make a call to the function declared in the class.

1.4 Tokens
Each word and punctuation is referred to as a token in C++. Tokens are the smallest
building block or smallest unit of a C++ program.
These following tokens are available in C++:

▪ Identifiers
▪ Keywords
▪ Constants
▪ Operators
▪ Strings

Identifiers

Identifiers are names given to different entries such as variables, structures, and
functions. Also, identifier names should have to be unique because these entities are
used in the execution of the program.

Keywords

Keywords are reserved words which have fixed meaning, and its meaning cannot be
changed. The meaning and working of these keywords are already known to the
compiler. C++ has more numbers of keyword than C, and those extra ones have
special working capabilities.

Operators

C++ operator is a symbol that is used to perform mathematical or logical
manipulations.

Constants

Constants are like a variable, except that their value never changes during execution
once defined.

https://www.w3schools.in/cplusplus-tutorial/keywords/
https://www.w3schools.in/cplusplus-tutorial/constants/
https://www.w3schools.in/cplusplus-tutorial/operators/
https://www.w3schools.in/cplusplus-tutorial/strings/

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 10

10

Strings

Strings are objects that signify sequences of characters.

1.5 Variables
Variables play a significant role in constructing a program, storing values in memory
and dealing with them. Variables are required in various functions of every program.
For example, when we check for conditions to execute a block of statements, variables
are required. Again for iterating or repeating a block of the statement(s) several times,
a counter variable is set along with a condition, or simply if we store the age of an
employee, we need an integer type variable. So in every respect, the variable is used.
In this tutorial, you will learn about how variables are declared in C++, how to assign
values to them, and how to use them within a C++ program.

What are Variables?
Variables are used in C++ where you will need to store any type of values within a
program and whose value can be changed during the program execution. These
variables can be declared in various ways each having different memory requirements
and storing capability. Variables are the name of memory locations that are allocated
by compilers, and the allocation is done based on the data type used for declaring the
variable.

Variable Definition in C++
A variable definition means that the programmer writes some instructions to tell the
compiler to create the storage in a memory location. The syntax for defining variables
is:

Syntax:
data_type variable_name;
data_type variable_name, variable_name, variable_name;
Here data_type means the valid C++ data type which includes int, float, double, char,

wchar_t, bool and variable list is the lists of variable names to be declared which is
separated by commas.

Example:
/* variable definition */int width, height, age;
char letter;
float area;
double d;

Variable Initialization in C++
Variables are declared in the above example, but none of them has been assigned
any value. Variables can be initialized, and the initial value can be assigned along with
their declaration.
Syntax:
data_type variable_name = value;
Example:

https://www.w3schools.in/cplusplus-tutorial/data-types/

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 11

11

/* variable definition and initialization */int width, height=5, a
ge=32;
char letter='A';
float area;
double d;

/* actual initialization */width = 10;
area = 26.5;
There are some rules that must be in your knowledge to work with C++ variables.

Rules of Declaring variables in C++

• A variable name can consist of Capital letters A-Z, lowercase letters a-z, digits 0-9,
and the underscore character.

• The first character must be a letter or underscore.
• Blank spaces cannot be used in variable names.
• Special characters like #, $ are not allowed.
• C++ keywords cannot be used as variable names.
• Variable names are case-sensitive.
• A variable name can be consisting of 31 characters only if we declare a variable more

than one characters compiler will ignore after 31 characters.
• Variable type can be bool, char, int, float, double, void or wchar_t.

Here's a Program to Show the Usage of Variables in C++
Example:
#include <iostream>
using namespace std;

int main()
{
 int x = 5;
 int y = 2;
 int Result;
 Result = x * y;
 cout << Result;
}
Another program showing how Global variables are declared and used within a
program:
Example:
#include <iostream>
using namespace std;

// Global Variable declaration:
int x, y;
float f;

int main()
{
 // Local variable
 int tot;
 float f;

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 12

12

 x = 10;
 y = 20;
 tot = x + y;

 cout << tot;
 cout << endl;
 f = 70.0 / 3.0;
 cout << f;
 cout << endl;
}

1.6 Data Types
Data types in any of the language mean that what are the various type of data the
variables can have in that particular language. Information is stored in computer
memory with different data types. Whenever a variable is declared it becomes
necessary to define a data type that what will be the type of data that variable can
hold.
Data Types available in C++:

1. Primary(Built-in) Data Types:

▪ character
▪ integer
▪ floating point
▪ boolean
▪ double floating point
▪ void
▪ wide character

2. User Defined Data Types:

▪ Structure
▪ Union
▪ Class
▪ Enumeration

3. Derived Data Types:

▪ Array
▪ Function
▪ Pointer
▪ Reference

Character Data Types

Data Type
(Keywords)

Description Size Typical
Range

char Any single character. It may include a
letter, a digit, a punctuation mark, or a
space.

1 byte -128 to 127 or
0 to 255

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 13

13

signed char Signed character. 1 byte -128 to 127

unsigned char Unsigned character. 1 byte 0 to 255

wchar_t Wide character. 2 or 4
bytes

1 wide
character

Integer Data Types
Data Type
(Keywords)

Description Size Typical Range

int Integer. 4
bytes

-2147483648 to
2147483647

signed int Signed integer. Values may be
negative, positive, or zero.

4
bytes

-2147483648 to
2147483647

unsigned int Unsigned integer. Values are always
positive or zero. Never negative.

4
bytes

0 to 4294967295

short Short integer. 2
bytes

-32768 to 32767

signed short Signed short integer. Values may be
negative, positive, or zero.

2
bytes

-32768 to 32767

unsigned short Unsigned short integer. Values are
always positive or zero. Never
negative.

2
bytes

0 to 65535

long Long integer. 4
bytes

-2147483648 to
2147483647

signed long Signed long integer. Values may be
negative, positive, or zero.

4
bytes

-2147483648 to
2147483647

unsigned long Unsigned long integer. Values are
always positive or zero. Never
negative.

4
bytes

0 to 4294967295

Floating-point Data Types
Data Type
(Keywords)

Description Size Typical Range

float Floating point number. There is no fixed
number of digits before or after the
decimal point.

4
bytes

+/- 3.4e +/- 38
(~7 digits)

double Double precision floating point number.
More accurate compared to float.

8
bytes

+/- 1.7e +/- 308
(~15 digits)

long double Long double precision floating point
number.

8
bytes

+/- 1.7e +/- 308
(~15 digits)

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 14

14

Boolean Data Type
Data Type
(Keywords)

Description Size Typical
Range

bool Boolean value. It can only take one of two
values: true or false.

1
byte

true or false

Variables sizes might be different in your PC from those shown in the above table, depending
on the compiler you are using.

Below example will produce the correct size of various data
type, on your computer.

Example:

#include <iostream>
using namespace std;
int main() {
 cout << "Size of char is " << sizeof(char) << endl;
 cout << "Size of int is " << sizeof(int) << endl;
 cout << "Size of float is " << sizeof(float) << endl;
 cout << "Size of short int is " << sizeof(short int) << endl;
 cout << "Size of long int is " << sizeof(long int) << endl;
 cout << "Size of double is " << sizeof(double) << endl;
 cout << "Size of wchar_t is " << sizeof(wchar_t) << endl;
 return 0;
}
Program Output:

Size of char is 1
Size of int is 4
Size of float is 4
Size of short int is 2
Size of long int is 4
Size of double is 8
Size of wchar_t is 4

Enum Data Type

This is a user-defined data type having a finite set of enumeration constants. The
keyword 'enum' is used to create an enumerated data type.
Syntax:
enum enum-name {list of names}var-list;
enum mca(software, internet, seo);

Typedef

It is used to create a new data type. But it is commonly used to change the existing
data type with another name.
Syntax:
typedef [data_type] synonym;

or
typedef [data_type] new_data_type;

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 15

15

Example:
typedef int integer;
integer rollno;

1.7 Type Casting
A cast is a special operator that forces one data type to be converted into another.
As an operator, a cast is unary and has the same precedence as any other unary
operator.
The most general cast supported by most of the C++ compilers is as follows −
(type) expression

Where type is the desired data type. There are other casting operators supported by
C++, they are listed below −

• const_cast<type> (expr) − The const_cast operator is used to explicitly
override const and/or volatile in a cast. The target type must be the same as
the source type except for the alteration of its const or volatile attributes. This
type of casting manipulates the const attribute of the passed object, either to
be set or removed.

• dynamic_cast<type> (expr) − The dynamic_cast performs a runtime cast that
verifies the validity of the cast. If the cast cannot be made, the cast fails and
the expression evaluates to null. A dynamic_cast performs casts on
polymorphic types and can cast a A* pointer into a B* pointer only if the object
being pointed to actually is a B object.

• reinterpret_cast<type> (expr) − The reinterpret_cast operator changes a
pointer to any other type of pointer. It also allows casting from pointer to an
integer type and vice versa.

• static_cast<type> (expr) − The static_cast operator performs a
nonpolymorphic cast. For example, it can be used to cast a base class pointer
into a derived class pointer.

All of the above-mentioned casting operators will be used while working with classes
and objects. For now, try the following example to understand a simple cast operators
available in C++. Copy and paste the following C++ program in test.cpp file and
compile and run this program.

#include <iostream>

using namespace std;

main() {

 double a = 21.09399;

 float b = 10.20;

 int c ;

 c = (int) a;

 cout << "Line 1 - Value of (int)a is :" << c << endl ;

 c = (int) b;

 cout << "Line 2 - Value of (int)b is :" << c << endl ;

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 16

16

 return 0;

}

When the above code is compiled and executed, it produces the following result −
Line 1 - Value of (int)a is :21

Line 2 - Value of (int)b is :10

1.8 Operators
An operator is a symbol that tells the compiler to perform specific mathematical or
logical manipulations. C++ is rich in built-in operators and provide the following types
of operators −

• Arithmetic Operators
• Relational Operators
• Logical Operators
• Bitwise Operators
• Assignment Operators
• Misc Operators

This chapter will examine the arithmetic, relational, logical, bitwise, assignment and
other operators one by one.

Arithmetic Operators
There are following arithmetic operators supported by C++ language −
Assume variable A holds 10 and variable B holds 20, then −
Show Examples

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiplies both operands A * B will give 200

/ Divides numerator by de-numerator B / A will give 2

% Modulus Operator and remainder of
after an integer division

B % A will give 0

++ Increment operator, increases integer
value by one

A++ will give 11

-- Decrement operator, decreases integer
value by one

A-- will give 9

Relational Operators
There are following relational operators supported by C++ language
Assume variable A holds 10 and variable B holds 20, then −
Show Examples

Operator Description Example

== Checks if the values of two operands
are equal or not, if yes then condition
becomes true.

(A == B) is not true.

!= Checks if the values of two operands
are equal or not, if values are not equal
then condition becomes true.

(A != B) is true.

https://www.tutorialspoint.com/cplusplus/cpp_arithmatic_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_increment_decrement_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_increment_decrement_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_relational_operators.htm

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 17

17

> Checks if the value of left operand is
greater than the value of right operand,
if yes then condition becomes true.

(A > B) is not true.

< Checks if the value of left operand is
less than the value of right operand, if
yes then condition becomes true.

(A < B) is true.

>= Checks if the value of left operand is
greater than or equal to the value of
right operand, if yes then condition
becomes true.

(A >= B) is not true.

<= Checks if the value of left operand is
less than or equal to the value of right
operand, if yes then condition becomes
true.

(A <= B) is true.

Logical Operators
There are following logical operators supported by C++ language.
Assume variable A holds 1 and variable B holds 0, then −
Show Examples

Operator Description Example

&& Called Logical AND operator. If both the
operands are non-zero, then condition
becomes true.

(A && B) is false.

|| Called Logical OR Operator. If any of
the two operands is non-zero, then
condition becomes true.

(A || B) is true.

! Called Logical NOT Operator. Use to
reverses the logical state of its operand.
If a condition is true, then Logical NOT
operator will make false.

!(A && B) is true.

Bitwise Operators
Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for
&, |, and ^ are as follows −

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13; now in binary format they will be as follows −
A = 0011 1100
B = 0000 1101

A&B = 0000 1100
A|B = 0011 1101
A^B = 0011 0001
~A = 1100 0011
The Bitwise operators supported by C++ language are listed in the following table.
Assume variable A holds 60 and variable B holds 13, then −

https://www.tutorialspoint.com/cplusplus/cpp_logical_operators.htm

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 18

18

Show Examples

Operator Description Example

& Binary AND Operator copies a bit to the
result if it exists in both operands.

(A & B) will give 12 which is 0000 1100

| Binary OR Operator copies a bit if it
exists in either operand.

(A | B) will give 61 which is 0011 1101

^ Binary XOR Operator copies the bit if it
is set in one operand but not both.

(A ^ B) will give 49 which is 0011 0001

~ Binary Ones Complement Operator is
unary and has the effect of 'flipping' bits.

(~A) will give -61 which is 1100 0011 in
2's complement form due to a signed
binary number.

<< Binary Left Shift Operator. The left
operands value is moved left by the
number of bits specified by the right
operand.

A << 2 will give 240 which is 1111 0000

>> Binary Right Shift Operator. The left
operands value is moved right by the
number of bits specified by the right
operand.

A >> 2 will give 15 which is 0000 1111

Assignment Operators
There are following assignment operators supported by C++ language −
Show Examples

Operator Description Example

= Simple assignment operator, Assigns
values from right side operands to left side
operand.

C = A + B will assign value of A + B
into C

+= Add AND assignment operator, It adds
right operand to the left operand and
assign the result to left operand.

C += A is equivalent to C = C + A

-= Subtract AND assignment operator, It
subtracts right operand from the left
operand and assign the result to left
operand.

C -= A is equivalent to C = C - A

*= Multiply AND assignment operator, It
multiplies right operand with the left
operand and assign the result to left
operand.

C *= A is equivalent to C = C * A

/= Divide AND assignment operator, It
divides left operand with the right operand
and assign the result to left operand.

C /= A is equivalent to C = C / A

https://www.tutorialspoint.com/cplusplus/cpp_bitwise_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_assignment_operators.htm

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 19

19

%= Modulus AND assignment operator, It
takes modulus using two operands and
assign the result to left operand.

C %= A is equivalent to C = C % A

<<= Left shift AND assignment operator. C <<= 2 is same as C = C << 2

>>= Right shift AND assignment operator. C >>= 2 is same as C = C >> 2

&= Bitwise AND assignment operator. C &= 2 is same as C = C & 2

^= Bitwise exclusive OR and assignment
operator.

C ^= 2 is same as C = C ^ 2

|= Bitwise inclusive OR and assignment
operator.

C |= 2 is same as C = C | 2

Misc Operators
The following table lists some other operators that C++ supports.

Sr.No Operator & Description

1 sizeof
sizeof operator returns the size of a variable. For example, sizeof(a), where ‘a’ is
integer, and will return 4.

2 Condition ? X : Y
Conditional operator (?). If Condition is true then it returns value of X otherwise
returns value of Y.

3 ,
Comma operator causes a sequence of operations to be performed. The value of
the entire comma expression is the value of the last expression of the comma-
separated list.

4 . (dot) and -> (arrow)
Member operators are used to reference individual members of classes, structures,
and unions.

5 Cast
Casting operators convert one data type to another. For example, int(2.2000) would
return 2.

6 &
Pointer operator & returns the address of a variable. For example &a; will give actual
address of the variable.

7 *
Pointer operator * is pointer to a variable. For example *var; will pointer to a variable
var.

https://www.tutorialspoint.com/cplusplus/cpp_sizeof_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_conditional_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_comma_operator.htm
https://www.tutorialspoint.com/cplusplus/cpp_member_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_casting_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_operators.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_operators.htm

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 20

20

1.9 Decision Making

Decision making structures require that the programmer specify one or more
conditions to be evaluated or tested by the program, along with a statement or
statements to be executed if the condition is determined to be true, and optionally,
other statements to be executed if the condition is determined to be false.

Following is the general form of a typical decision making structure found in most of
the programming languages −

C++ programming language provides following types of decision making statements.

Sr.No Statement & Description

1 if statement

An ‘if’ statement consists of a boolean expression followed by one or more
statements.

2 if...else statement

An ‘if’ statement can be followed by an optional ‘else’ statement, which executes
when the boolean expression is false.

https://www.tutorialspoint.com/cplusplus/cpp_if_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_if_else_statement.htm

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 21

21

3 switch statement

A ‘switch’ statement allows a variable to be tested for equality against a list of values.

4 nested if statements

You can use one ‘if’ or ‘else if’ statement inside another ‘if’ or ‘else if’ statement(s).

5 nested switch statements

You can use one ‘switch’ statement inside another ‘switch’ statement(s).

The ? : Conditional Operator

We have covered conditional operator “? :” in previous chapter which can be used to
replace if...else statements. It has the following general form −

Exp1 ? Exp2 : Exp3;

Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.

The value of a ‘?’ expression is determined like this: Exp1 is evaluated. If it is true,
then Exp2 is evaluated and becomes the value of the entire ‘?’ expression. If Exp1 is
false, then Exp3 is evaluated and its value becomes the value of the expression.

1. if statement

An if statement consists of a boolean expression followed by one or more statements.

Syntax

The syntax of an if statement in C++ is −

if(boolean_expression) {

 // statement(s) will execute if the boolean expression is true

}

If the boolean expression evaluates to true, then the block of code inside the if
statement will be executed. If boolean expression evaluates to false, then the first set
of code after the end of the if statement (after the closing curly brace) will be executed.

https://www.tutorialspoint.com/cplusplus/cpp_switch_statement.htm
https://www.tutorialspoint.com/cplusplus/cpp_nested_if.htm
https://www.tutorialspoint.com/cplusplus/cpp_nested_switch.htm
https://www.tutorialspoint.com/cplusplus/cpp_conditional_operator.htm

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 22

22

Flow Diagram

Example
#include <iostream>

using namespace std;

int main () {

 // local variable declaration:

 int a = 10;

 // check the boolean condition

 if(a < 20) {

 // if condition is true then print the following

 cout << "a is less than 20;" << endl;

 }

 cout << "value of a is : " << a << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

a is less than 20;

value of a is : 10

2. if...else statement

An if statement can be followed by an optional else statement, which executes when
the boolean expression is false.

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 23

23

Syntax

The syntax of an if...else statement in C++ is −

if(boolean_expression) {

 // statement(s) will execute if the boolean expression is true

} else {

 // statement(s) will execute if the boolean expression is false

}

If the boolean expression evaluates to true, then the if block of code will be
executed, otherwise else block of code will be executed.

Flow Diagram

Example
#include <iostream>

using namespace std;

int main () {

 // local variable declaration:

 int a = 100;

 // check the boolean condition

 if(a < 20) {

 // if condition is true then print the following

 cout << "a is less than 20;" << endl;

 } else {

 // if condition is false then print the following

 cout << "a is not less than 20;" << endl;

 }

 cout << "value of a is : " << a << endl;

 return 0;

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 24

24

}

When the above code is compiled and executed, it produces the following result −

a is not less than 20;

value of a is : 100

if...else if...else Statement

An if statement can be followed by an optional else if...else statement, which is very
usefull to test various conditions using single if...else if statement.

When using if , else if , else statements there are few points to keep in mind.

• An if can have zero or one else's and it must come after any else if's.

• An if can have zero to many else if's and they must come before the else.

• Once an else if succeeds, none of he remaining else if's or else's will be tested.

Syntax

The syntax of an if...else if...else statement in C++ is −

if(boolean_expression 1) {

 // Executes when the boolean expression 1 is true

} else if(boolean_expression 2) {

 // Executes when the boolean expression 2 is true

} else if(boolean_expression 3) {

 // Executes when the boolean expression 3 is true

} else {

 // executes when the none of the above condition is true.

}

Example
#include <iostream>

using namespace std;

int main () {

 // local variable declaration:

 int a = 100;

 // check the boolean condition

 if(a == 10) {

 // if condition is true then print the following

 cout << "Value of a is 10" << endl;

 } else if(a == 20) {

 // if else if condition is true

 cout << "Value of a is 20" << endl;

 } else if(a == 30) {

 // if else if condition is true

 cout << "Value of a is 30" << endl;

 } else {

 // if none of the conditions is true

 cout << "Value of a is not matching" << endl;

 }

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 25

25

 cout << "Exact value of a is : " << a << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Value of a is not matching

Exact value of a is : 100

3. Switch statement

A switch statement allows a variable to be tested for equality against a list of values.
Each value is called a case, and the variable being switched on is checked for each
case.

Syntax

The syntax for a switch statement in C++ is as follows −

switch(expression) {

 case constant-expression :

 statement(s);

 break; //optional

 case constant-expression :

 statement(s);

 break; //optional

 // you can have any number of case statements.

 default : //Optional

 statement(s);

}

The following rules apply to a switch statement −

• The expression used in a switch statement must have an integral or
enumerated type, or be of a class type in which the class has a single
conversion function to an integral or enumerated type.

• You can have any number of case statements within a switch. Each case is
followed by the value to be compared to and a colon.

• The constant-expression for a case must be the same data type as the
variable in the switch, and it must be a constant or a literal.

• When the variable being switched on is equal to a case, the statements
following that case will execute until a break statement is reached.

• When a break statement is reached, the switch terminates, and the flow of
control jumps to the next line following the switch statement.

• Not every case needs to contain a break. If no break appears, the flow of
control will fall through to subsequent cases until a break is reached.

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 26

26

• A switch statement can have an optional default case, which must appear at
the end of the switch. The default case can be used for performing a task when
none of the cases is true. No break is needed in the default case.

Flow Diagram

Example
#include <iostream>

using namespace std;

int main () {

 // local variable declaration:

 char grade = 'D';

 switch(grade) {

 case 'A' :

 cout << "Excellent!" << endl;

 break;

 case 'B' :

 case 'C' :

 cout << "Well done" << endl;

 break;

 case 'D' :

 cout << "You passed" << endl;

 break;

 case 'F' :

 cout << "Better try again" << endl;

 break;

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 27

27

 default :

 cout << "Invalid grade" << endl;

 }

 cout << "Your grade is " << grade << endl;

 return 0;

}

This would produce the following result −

You passed

Your grade is D

4. Nested if statements

It is always legal to nest if-else statements, which means you can use one if or else
if statement inside another if or else if statement(s).

Syntax

The syntax for a nested if statement is as follows −

if(boolean_expression 1) {

 // Executes when the boolean expression 1 is true

 if(boolean_expression 2) {

 // Executes when the boolean expression 2 is true

 }

}

You can nest else if...else in the similar way as you have nested if statement.

Example
#include <iostream>

using namespace std;

int main () {

 // local variable declaration:

 int a = 100;

 int b = 200;

 // check the boolean condition

 if(a == 100) {

 // if condition is true then check the following

 if(b == 200) {

 // if condition is true then print the following

 cout << "Value of a is 100 and b is 200" << endl;

 }

 }

 cout << "Exact value of a is : " << a << endl;

 cout << "Exact value of b is : " << b << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 28

28

Value of a is 100 and b is 200

Exact value of a is : 100

Exact value of b is : 200

5. Nested switch statements

It is possible to have a switch as part of the statement sequence of an outer switch.
Even if the case constants of the inner and outer switch contain common values, no
conflicts will arise.

C++ specifies that at least 256 levels of nesting be allowed for switch statements.

Syntax

The syntax for a nested switch statement is as follows −

switch(ch1) {

 case 'A':

 cout << "This A is part of outer switch";

 switch(ch2) {

 case 'A':

 cout << "This A is part of inner switch";

 break;

 case 'B': // ...

 }

 break;

 case 'B': // ...

}

Example
#include <iostream>

using namespace std;

int main () {

 // local variable declaration:

 int a = 100;

 int b = 200;

 switch(a) {

 case 100:

 cout << "This is part of outer switch" << endl;

 switch(b) {

 case 200:

 cout << "This is part of inner switch" << endl;

 }

 }

 cout << "Exact value of a is : " << a << endl;

 cout << "Exact value of b is : " << b << endl;

 return 0;

}

This would produce the following result −

This is part of outer switch

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 29

29

This is part of inner switch

Exact value of a is : 100

Exact value of b is : 200

Scope Resolution Operator

The :: (scope resolution) operator is used to get hidden names due to variable
scopes so that you can still use them. The scope resolution operator can be used as
both unary and binary. You can use the unary scope operator if a namespace scope
or global scope name is hidden by a particular declaration of an equivalent name
during a block or class. For example, if you have a global variable of name my_var
and a local variable of name my_var, to access global my_var, you'll need to use the
scope resolution operator.

example

#include <iostream>

using namespace std;

int my_var = 0;

int main(void) {

 int my_var = 0;

 ::my_var = 1; // set global my_var to 1

 my_var = 2; // set local my_var to 2

 cout << ::my_var << ", " << my_var;

 return 0;

}

Output
This will give the output −

1, 2

The declaration of my_var declared in the main function hides the integer named
my_var declared in global namespace scope. The statement ::my_var = 1
accesses the variable named my_var declared in global namespace scope.
You can also use the scope resolution operator to use class names or class member
names. If a class member name is hidden, you can use it by prefixing it with its class
name and the class scope operator. For example,

Example
#include <iostream>

using namespace std;

class X {

 public:

 static int count;

};

int X::count = 10; // define static data member

int main () {

 int X = 0; // hides class type X

 cout << X::count << endl; // use static member of class X

}

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 30

30

Output
10

Memory Allocation Operators

A good understanding of how dynamic memory really works in C++ is essential to
becoming a good C++ programmer. Memory in your C++ program is divided into two
parts −

• The stack − All variables declared inside the function will take up memory from
the stack.

• The heap − This is unused memory of the program and can be used to allocate
the memory dynamically when program runs.

Many times, you are not aware in advance how much memory you will need to store
particular information in a defined variable and the size of required memory can be
determined at run time.

You can allocate memory at run time within the heap for the variable of a given type
using a special operator in C++ which returns the address of the space allocated.
This operator is called new operator.

If you are not in need of dynamically allocated memory anymore, you can
use delete operator, which de-allocates memory that was previously allocated by
new operator.

New and Delete Operators

There is following generic syntax to use new operator to allocate memory
dynamically for any data-type.
new data-type;

Here, data-type could be any built-in data type including an array or any user defined
data types include class or structure. Let us start with built-in data types. For example
we can define a pointer to type double and then request that the memory be allocated
at execution time. We can do this using the new operator with the following
statements −
double* pvalue = NULL; // Pointer initialized with null

pvalue = new double; // Request memory for the variable

The memory may not have been allocated successfully, if the free store had been
used up. So it is good practice to check if new operator is returning NULL pointer and
take appropriate action as below −
double* pvalue = NULL;

if(!(pvalue = new double)) {

 cout << "Error: out of memory." <<endl;

 exit(1);

}

The malloc() function from C, still exists in C++, but it is recommended to avoid using
malloc() function. The main advantage of new over malloc() is that new doesn't just
allocate memory, it constructs objects which is prime purpose of C++.

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 31

31

At any point, when you feel a variable that has been dynamically allocated is not
anymore required, you can free up the memory that it occupies in the free store with
the ‘delete’ operator as follows −
delete pvalue; // Release memory pointed to by pvalue

Let us put above concepts and form the following example to show how ‘new’ and
‘delete’ work −

#include <iostream>

using namespace std;

int main () {

 double* pvalue = NULL; // Pointer initialized with null

 pvalue = new double; // Request memory for the variable

 *pvalue = 29494.99; // Store value at allocated address

 cout << "Value of pvalue : " << *pvalue << endl;

 delete pvalue; // free up the memory.

 return 0;

}

If we compile and run above code, this would produce the following result −
Value of pvalue : 29495

Dynamic Memory Allocation for Arrays

Consider you want to allocate memory for an array of characters, i.e., string of 20
characters. Using the same syntax what we have used above we can allocate
memory dynamically as shown below.
char* pvalue = NULL; // Pointer initialized with null

pvalue = new char[20]; // Request memory for the variable

To remove the array that we have just created the statement would look like this −
delete [] pvalue; // Delete array pointed to by pvalue

Following the similar generic syntax of new operator, you can allocate for a multi-
dimensional array as follows −
double** pvalue = NULL; // Pointer initialized with null

pvalue = new double [3][4]; // Allocate memory for a 3x4 array

However, the syntax to release the memory for multi-dimensional array will still
remain same as above −
delete [] pvalue; // Delete array pointed to by pvalue

Dynamic Memory Allocation for Objects

Objects are no different from simple data types. For example, consider the following
code where we are going to use an array of objects to clarify the concept −

#include <iostream>

using namespace std;

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 32

32

class Box {

 public:

 Box() {

 cout << "Constructor called!" <<endl;

 }

 ~Box() {

 cout << "Destructor called!" <<endl;

 }

};

int main() {

 Box* myBoxArray = new Box[4];

 delete [] myBoxArray; // Delete array

 return 0;

}

If you were to allocate an array of four Box objects, the Simple constructor would be
called four times and similarly while deleting these objects, destructor will also be
called same number of times.

If we compile and run above code, this would produce the following result −
Constructor called!

Constructor called!

Constructor called!

Constructor called!

Destructor called!

Destructor called!

Destructor called!

Destructor called!

Arrays
C++ provides a data structure, the array, which stores a fixed-size sequential
collection of elements of the same type. An array is used to store a collection of data,
but it is often more useful to think of an array as a collection of variables of the same
type.

Instead of declaring individual variables, such as number0, number1, ..., and
number99, you declare one array variable such as numbers and use numbers[0],
numbers[1], and ..., numbers[99] to represent individual variables. A specific element
in an array is accessed by an index.

All arrays consist of contiguous memory locations. The lowest address corresponds
to the first element and the highest address to the last element.

Declaring Arrays

To declare an array in C++, the programmer specifies the type of the elements and
the number of elements required by an array as follows −

type arrayName [arraySize];

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 33

33

This is called a single-dimension array. The arraySize must be an integer constant
greater than zero and type can be any valid C++ data type. For example, to declare
a 10-element array called balance of type double, use this statement −

double balance[10];

Initializing Arrays

You can initialize C++ array elements either one by one or using a single statement
as follows −

double balance[5] = {1000.0, 2.0, 3.4, 17.0, 50.0};

The number of values between braces { } can not be larger than the number of
elements that we declare for the array between square brackets []. Following is an
example to assign a single element of the array −

If you omit the size of the array, an array just big enough to hold the initialization is
created. Therefore, if you write −

double balance[] = {1000.0, 2.0, 3.4, 17.0, 50.0};

You will create exactly the same array as you did in the previous example.

balance[4] = 50.0;

The above statement assigns element number 5th in the array a value of 50.0. Array
with 4th index will be 5th, i.e., last element because all arrays have 0 as the index of
their first element which is also called base index. Following is the pictorial
representaion of the same array we discussed above −

Accessing Array Elements

An element is accessed by indexing the array name. This is done by placing the index
of the element within square brackets after the name of the array. For example −

double salary = balance[9];

The above statement will take 10th element from the array and assign the value to
salary variable. Following is an example, which will use all the above-mentioned three
concepts viz. declaration, assignment and accessing arrays −

#include <iostream>

using namespace std;

#include <iomanip>

using std::setw;

int main () {

 int n[10]; // n is an array of 10 integers

 // initialize elements of array n to 0

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 34

34

 for (int i = 0; i < 10; i++) {

 n[i] = i + 100; // set element at location i to i + 100

 }

 cout << "Element" << setw(13) << "Value" << endl;

 // output each array element's value

 for (int j = 0; j < 10; j++) {

 cout << setw(7)<< j << setw(13) << n[j] << endl;

 }

 return 0;

}

This program makes use of setw() function to format the output. When the above
code is compiled and executed, it produces the following result −

Element Value

 0 100

 1 101

 2 102

 3 103

 4 104

 5 105

 6 106

 7 107

 8 108

 9 109

Arrays in C++

Arrays are important to C++ and should need lots of more detail. There are following
few important concepts, which should be clear to a C++ programmer −

Sr.No Concept & Description

1 Multi-dimensional arrays

C++ supports multidimensional arrays. The simplest form of the multidimensional
array is the two-dimensional array.

2 Pointer to an array

You can generate a pointer to the first element of an array by simply specifying the
array name, without any index.

3 Passing arrays to functions

You can pass to the function a pointer to an array by specifying the array's name
without an index.

4 Return array from functions

C++ allows a function to return an array.

https://www.tutorialspoint.com/cplusplus/cpp_multi_dimensional_arrays.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_to_an_array.htm
https://www.tutorialspoint.com/cplusplus/cpp_passing_arrays_to_functions.htm
https://www.tutorialspoint.com/cplusplus/cpp_return_arrays_from_functions.htm

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 35

35

Strings
C++ provides following two types of string representations −

• The C-style character string.
• The string class type introduced with Standard C++.

The C-Style Character String
The C-style character string originated within the C language and continues to be
supported within C++. This string is actually a one-dimensional array of characters
which is terminated by a null character '\0'. Thus a null-terminated string contains the
characters that comprise the string followed by a null.
The following declaration and initialization create a string consisting of the word
"Hello". To hold the null character at the end of the array, the size of the character
array containing the string is one more than the number of characters in the word
"Hello."
 char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

If you follow the rule of array initialization, then you can write the above statement as
follows −
 char greeting[] = "Hello";

Following is the memory presentation of above defined string in C/C++ −

Actually, you do not place the null character at the end of a string constant. The C++
compiler automatically places the '\0' at the end of the string when it initializes the
array. Let us try to print above-mentioned string −

#include <iostream>

using namespace std;

int main () {

 char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

 cout << "Greeting message: ";

 cout << greeting << endl;

 return 0;

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 36

36

}

When the above code is compiled and executed, it produces the following result −
Greeting message: Hello

C++ supports a wide range of functions that manipulate null-terminated strings –

Sr.No Function & Purpose

1 strcpy(s1, s2);
Copies string s2 into string s1.

2 strcat(s1, s2);
Concatenates string s2 onto the end of string s1.

3 strlen(s1);
Returns the length of string s1.

4 strcmp(s1, s2);
Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if s1>s2.

5 strchr(s1, ch);
Returns a pointer to the first occurrence of character ch in string s1.

6 strstr(s1, s2);
Returns a pointer to the first occurrence of string s2 in string s1.

Following example makes use of few of the above-mentioned functions –

#include <iostream>

#include <cstring>

using namespace std;

int main () {

 char str1[10] = "Hello";

 char str2[10] = "World";

 char str3[10];

 int len ;

 // copy str1 into str3

 strcpy(str3, str1);

 cout << "strcpy(str3, str1) : " << str3 << endl;

 // concatenates str1 and str2

 strcat(str1, str2);

 cout << "strcat(str1, str2): " << str1 << endl;

 // total lenghth of str1 after concatenation

 len = strlen(str1);

 cout << "strlen(str1) : " << len << endl;

 return 0;

}

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 37

37

When the above code is compiled and executed, it produces result something as
follows −
strcpy(str3, str1) : Hello

strcat(str1, str2): HelloWorld

strlen(str1) : 10

The String Class in C++
The standard C++ library provides a string class type that supports all the operations
mentioned above, additionally much more functionality. Let us check the following
example −

#include <iostream>

#include <string>

using namespace std;

int main () {

 string str1 = "Hello";

 string str2 = "World";

 string str3;

 int len ;

 // copy str1 into str3

 str3 = str1;

 cout << "str3 : " << str3 << endl;

 // concatenates str1 and str2

 str3 = str1 + str2;

 cout << "str1 + str2 : " << str3 << endl;

 // total length of str3 after concatenation

 len = str3.size();

 cout << "str3.size() : " << len << endl;

 return 0;

}

When the above code is compiled and executed, it produces result something as
follows −
str3 : Hello

str1 + str2 : HelloWorld

str3.size() : 10

Structures
C/C++ arrays allow you to define variables that combine several data items of the
same kind, but structure is another user defined data type which allows you to
combine data items of different kinds.

Structures are used to represent a record, suppose you want to keep track of your
books in a library. You might want to track the following attributes about each book −

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 38

38

• Title

• Author

• Subject

• Book ID

Defining a Structure

To define a structure, you must use the struct statement. The struct statement defines
a new data type, with more than one member, for your program. The format of the
struct statement is this −

struct [structure tag] {

 member definition;

 member definition;

 ...

 member definition;

} [one or more structure variables];

The structure tag is optional and each member definition is a normal variable
definition, such as int i; or float f; or any other valid variable definition. At the end of
the structure's definition, before the final semicolon, you can specify one or more
structure variables but it is optional. Here is the way you would declare the Book
structure −

struct Books {

 char title[50];

 char author[50];

 char subject[100];

 int book_id;

} book;

Accessing Structure Members

To access any member of a structure, we use the member access operator (.). The
member access operator is coded as a period between the structure variable name
and the structure member that we wish to access. You would use struct keyword to
define variables of structure type. Following is the example to explain usage of
structure −

#include <iostream>

#include <cstring>

using namespace std;

struct Books {

 char title[50];

 char author[50];

 char subject[100];

 int book_id;

};

int main() {

 struct Books Book1; // Declare Book1 of type Book

 struct Books Book2; // Declare Book2 of type Book

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 39

39

 // book 1 specification

 strcpy(Book1.title, "Learn C++ Programming");

 strcpy(Book1.author, "Chand Miyan");

 strcpy(Book1.subject, "C++ Programming");

 Book1.book_id = 6495407;

 // book 2 specification

 strcpy(Book2.title, "Telecom Billing");

 strcpy(Book2.author, "Yakit Singha");

 strcpy(Book2.subject, "Telecom");

 Book2.book_id = 6495700;

 // Print Book1 info

 cout << "Book 1 title : " << Book1.title <<endl;

 cout << "Book 1 author : " << Book1.author <<endl;

 cout << "Book 1 subject : " << Book1.subject <<endl;

 cout << "Book 1 id : " << Book1.book_id <<endl;

 // Print Book2 info

 cout << "Book 2 title : " << Book2.title <<endl;

 cout << "Book 2 author : " << Book2.author <<endl;

 cout << "Book 2 subject : " << Book2.subject <<endl;

 cout << "Book 2 id : " << Book2.book_id <<endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Book 1 title : Learn C++ Programming

Book 1 author : Chand Miyan

Book 1 subject : C++ Programming

Book 1 id : 6495407

Book 2 title : Telecom Billing

Book 2 author : Yakit Singha

Book 2 subject : Telecom

Book 2 id : 6495700

Structures as Function Arguments

You can pass a structure as a function argument in very similar way as you pass any
other variable or pointer. You would access structure variables in the similar way as
you have accessed in the above example −

#include <iostream>

#include <cstring>

using namespace std;

void printBook(struct Books book);

struct Books {

 char title[50];

 char author[50];

UNIT – I Principles of Object Oriented Programming.

PROF. YOGESH GAIKWAD TEACHING HOURS 08 TOTAL MARKS 14 40

40

 char subject[100];

 int book_id;

};

int main() {

 struct Books Book1; // Declare Book1 of type Book

 struct Books Book2; // Declare Book2 of type Book

 // book 1 specification

 strcpy(Book1.title, "Learn C++ Programming");

 strcpy(Book1.author, "Chand Miyan");

 strcpy(Book1.subject, "C++ Programming");

 Book1.book_id = 6495407;

 // book 2 specification

 strcpy(Book2.title, "Telecom Billing");

 strcpy(Book2.author, "Yakit Singha");

 strcpy(Book2.subject, "Telecom");

 Book2.book_id = 6495700;

 // Print Book1 info

 printBook(Book1);

 // Print Book2 info

 printBook(Book2);

 return 0;

}

void printBook(struct Books book) {

 cout << "Book title : " << book.title <<endl;

 cout << "Book author : " << book.author <<endl;

 cout << "Book subject : " << book.subject <<endl;

 cout << "Book id : " << book.book_id <<endl;

}

When the above code is compiled and executed, it produces the following result −

Book title : Learn C++ Programming

Book author : Chand Miyan

Book subject : C++ Programming

Book id : 6495407

Book title : Telecom Billing

Book author : Yakit Singha

Book subject : Telecom

Book id : 6495700

